Cloudera Enterprise 5.15.x | Other versions

Running Your First Spark Application

The simplest way to run a Spark application is by using the Scala or Python shells.
  1. To start one of the shell applications, run one of the following commands:
    • Scala:
      $ SPARK_HOME/bin/spark-shell
      Welcome to
            ____              __
           / __/__  ___ _____/ /__
          _\ \/ _ \/ _ `/ __/  '_/
         /___/ .__/\_,_/_/ /_/\_\   version ...
            /_/
      
      Using Scala version 2.10.4 (Java HotSpot(TM) 64-Bit Server VM, Java 1.7.0_67)
      Type in expressions to have them evaluated.
      Type :help for more information
      ...
      SQL context available as sqlContext.
      
      scala>
    • Python:
      $ SPARK_HOME/bin/pyspark
      Python 2.6.6 (r266:84292, Jul 23 2015, 15:22:56)
      [GCC 4.4.7 20120313 (Red Hat 4.4.7-11)] on linux2
      Type "help", "copyright", "credits" or "license" for more information
      ...
      Welcome to
            ____              __
           / __/__  ___ _____/ /__
          _\ \/ _ \/ _ `/ __/  '_/
         /__ / .__/\_,_/_/ /_/\_\   version ...
            /_/
      
      Using Python version 2.6.6 (r266:84292, Jul 23 2015 15:22:56)
      SparkContext available as sc, HiveContext available as sqlContext.
      >>>

    In a CDH deployment, SPARK_HOME defaults to /usr/lib/spark in package installations and /opt/cloudera/parcels/CDH/lib/spark in parcel installations. In a Cloudera Manager deployment, the shells are also available from /usr/bin.

    For a complete list of shell options, run spark-shell or pyspark with the -h flag.

  2. To run the classic Hadoop word count application, copy an input file to HDFS:
    $ hdfs dfs -put input
  3. Within a shell, run the word count application using the following code examples, substituting for namenode_host, path/to/input, and path/to/output:
    • Scala
      scala> val myfile = sc.textFile("hdfs://namenode_host:8020/path/to/input")
      scala> val counts = myfile.flatMap(line => line.split(" ")).map(word => (word, 1)).reduceByKey(_ + _)
      scala> counts.saveAsTextFile("hdfs://namenode:8020/path/to/output")
    • Python
      >>> myfile = sc.textFile("hdfs://namenode_host:8020/path/to/input")
      >>> counts = myfile.flatMap(lambda line: line.split(" ")).map(lambda word: (word, 1)).reduceByKey(lambda v1,v2: v1 + v2)
      >>> counts.saveAsTextFile("hdfs://namenode:8020/path/to/output")
Page generated May 18, 2018.